Centre For High Energy Physics

Faculty of Science University of the Punjab, Lahore Course Outline

Program	ne BSCP	Course Code	CPHY 281	Credit Hours	3			
Course Ti	Course Title Introduction to Scientific Computation							
Course Introduction								
The Computer Programming course offers a thorough investigation of Mathematica and Python-based mathematical computing. The course prepares students for more difficult programming problems by covering math, variables, lists, expressions, patterns, and replacement rules. The construction of functions, data visualization, symbolic and numerical computations, and the solution of linear and nonlinear equations are all covered in the course. The ability to execute accurate numerical computations and simplify algebraic statements will be taught to students. They will also gain knowledge of methods for solving differential equations symbolically as well as how to handle complicated mathematical problems utilizing vectors, matrices, and tensors. Data file reading and writing procedures, output formats, and input and output activities are all covered in the course. By the end, pupils will be adept math and science problem solvers.								
	L	earning Outcomes						
 The course introduces the subject of scientific computing. Its objectives are as following. 1. Studying the concepts of computer arithmetic and approximations in computing. 2. Getting experience of working with different problem-solving environments. 3. Getting experience of working with different Scientific Libraries. 								
		Course Content						
Week 1	Introduction to Python • Introduction to Python • What is Python? • Installing Python and setting up the development environment. • Basic Syntax • Writing and running Python scripts. • Variables, data types, and basic operations. Introduction to Python Control Flow • Conditional statements (if, elif, else). • Loops (for, while). Practice Problems							
Week 2	 Simple exercises to practice control flow and basic syntax. Data Structures Lists and Tuples Creating and manipulating lists and tuples. List comprehensions. Dictionaries and Sets Creating and using dictionaries and sets. Dictionary and set comprehensions. Data Structures Strings String operations and formatting. 							

	Practice Problems		
	Exercises to work with different data structures.		
	Functions and Modules		
	• Functions		
	 Defining and calling functions. 		
	• Parameters and return values.		
	• Lambda functions.		
	Modules and Packages		
Week 3	 Importing and using modules. 		
	 Standard library overview. 		
	 Creating and using packages. 		
	Error Handling		
	• Try, except, and finally blocks.		
	Practice Problems		
	Exercises on writing functions and using modules.		
	Data Manipulation and Analysis		
	• File I/O		
	 Reading from and writing to files. 		
Week 4	 Working with CSV and JSON files. 		
WEEK 4	Introduction toPandas		
	Installing Pandas		
	Data Structures: Series and DataFrame		
	Basic Operations: Creating, Viewing, and Inspecting Data		
	Data Manipulation and Analysis		
	Data Visualization		
	What is Matplotlib?		
	Installation and Setup		
	Basic Plotting: Line Plots, Scatter Plots, Bar Charts		
	Customizing Plots: Titles, Labels, Legends, and Annotations		
	Advanced Plotting: Subplots, Histograms, and 3D Plots		
W I. 5	Introduction to NumPy		
Week 5	• What is NumPy?		
	Installation and Setup		
	NumPy Arrays: Creation, Indexing, and Slicing Device On continuous Arithmetics, Assuremention, and Breadcasting		
	Basic Operations: Arithmetic, Aggregation, and Broadcasting		
	• Common Functions: numpy.arange(), numpy.linspace(), numpy.zeros(), numpy.ones(),		
	and numpy.random Practice Problems		
	Basic array operations		
	 Using NumPy for simple statistical calculations 		
	Introduction to SciPy		
	What is SciPy?		
	 Installation and Setup 		
	 SciPy Modules 		
Week 6	• Sen y Modules Overview: scipy.optimize, scipy.integrate, scipy.interpolate, scipy.linalg		
WUUK U	Optimization and Integration		
	 Optimization and integration Optimization: Using scipy.optimize.minimize() for finding function minima 		
	 Integration: Using scipy.integrate.quad() for numerical integration 		
	Interpolation and Linear Algebra		

	• Interpolation: Using scipy.interpolate.interp1d() for 1D interpolation			
	• Linear Algebra: Using scipy.linalg for matrix operations			
	Practice Problems			
	Solving optimization problems			
	Performing numerical integration and interpolation			
	Introduction to SymPy			
	• What is SymPy?			
	Installation and Setup			
	Symbolic Computation Basics: Variables, Expressions, and Simplification			
Week 7	Solving Algebraic Equations and Calculus Operations			
Week /	Symbolic Integration and Differentiation			
	Practice Problems			
	Simplifying expressions			
	Solving equations symbolically			
	Performing symbolic differentiation and integration			
	Introduction to Matplotlib			
	What is Matplotlib?			
	Installation and Setup Design Platting: Line Plate Section Plate Der Charte			
Week 9	Basic Plotting: Line Plots, Scatter Plots, Bar Charts Customizing Plots: Titles, Labels, Legends, and Amototions			
Week 8	 Customizing Plots: Titles, Labels, Legends, and Annotations Advanced Plotting: Subplots, Histograms, and 3D Plots 			
	Advanced Flotting: Subplots, Histograms, and SD Flots Practice Problems			
	Creating and customizing different types of plots			
	 Visualizing data with advanced plotting techniques 			
	Mathematical Computations and Visualization			
	Numerical Integration and Differentiation			
	• Numerical Integration: Using scipy.integrate.quad(), scipy.integrate.simps()			
	• Numerical Differentiation: Finite differences and numpy.gradient()			
	Root Finding and Optimization			
	 Root Finding: Using scipy.optimize.root(), scipy.optimize.brentq() 			
	• Finding the Minimum of a Function:			
Week 9	Using scipy.optimize.minimize(), scipy.optimize.minimize_scalar()			
WCCK J	Symbolic Computations			
	• Differentiation and Integration with SymPy: Using sympy.diff(), sympy.integrate()			
	Practice Problems			
	Solving integrals and derivatives numerically and symbolically			
	• Finding roots and minima of functions			
	Visualization			
	Plotting results using Matplotlib: Line plots, scatter plots			
	Linear Algebra and Advanced Numerical Methods			
	Computation with Vectors and Matrices			
	• Vectors and Matrices Operations with NumPy: Dot product, matrix multiplication,			
	inverse, and eigenvalues			
Week 10	Tensors			
	• Introduction to Tensors: Basic operations and manipulations using NumPy			
	Gradient, Divergence, Curl			
	Calculating Gradient, Divergence, and Curl: Using NumPy and SciPy functions			

	Practice Problems				
	Matrix operations and tensor computations				
	Gradient, divergence, and curl calculations				
	Visualization				
	 Visualizing vector fields and tensor operations using Matplotlib 				
	Interpolation, Curve Fitting, and Series Approximations				
	Interpolation Functions and Curve Fitting				
Week 11	• Interpolation: Using scipy.interpolate.interp1d(), scipy.interpolate.CubicSpline()				
Week II	• Curve Fitting: Using scipy.optimize.curve_fit()				
	Series Approximations				
	• Series Expansions: Taylor series and Fourier series using SymPy				
	Practice Problems				
	• Fitting curves to data and performing interpolations				
	 Approximating functions with series expansions 				
	Visualization				
Week 12	Plotting fitted curves and interpolation results				
	Solving Differential Equations				
	Ordinary Differential Equations (ODEs):				
	Using scipy.integrate.odeint(), scipy.integrate.solve ivp()				
	Symbolic Solutions: Using SymPy's dsolve()				
	Laplace Transforms and Inverse Laplace Transforms				
	• Laplace Transformations: Using SymPy's laplace_transform()				
Week 13	• Inverse Laplace Transformations: Using SymPy's inverse_laplace_transform()				
week 15	Practice Problems				
	Solving ODEs numerically and symbolically				
	Applying Laplace transforms to solve differential equations				
	Visualization				
	Plotting solutions of differential equations and transformed functions				
Week 14	Advanced Methods and Applications				
WEEK 14	Variation of Parameters				
	• Theory and Application: Solving differential equations using the method of variation of				
	parameters				
	Shooting Method				
	• Theory and Example: Using the shooting method to solve boundary value problems				
	Numerical Solutions and Boundary Value Problems				
Week 15	Inhomogeneous Boundary Value Problems: Numerical methods for solving these				
WEEK 15	problems				
	Practice Problems				
	 Applying the shooting method and variation of parameters 				
	Solving inhomogeneous boundary value problems numerically				
	Final Project				
Week 16	A comprehensive project integrating all concepts				
WEEK IU	• Example Project: Solve and visualize a complex system involving differential				
	equations, boundary conditions, and optimization				
	Textbooks and Reading Material				
1. Scie (19)	entific Computing: An Introductory Survey, M. Heath, <i>McGraw-Hill International Edition</i> 97)				
	thematica for Scientists and Engineers, Thomas B. Bahder, <i>Addison-Wesley</i> (1995).				

- 3. Introduction to Scientific Computing (1st edition), Brigitte Lucquin, John Wiley & Sons (1998).
- 4. Numerical Recipes in C: The Art of Scientific Computing (2nd Edition), W. H. Press, B. P. Teukolsky, W. T. Vetterling, *Cambridge University Press* (1992).

Teaching Learning Strategies

The instructor is required to make use of FORTRAN/C/C++/Mathematica/Python/C# to teach the concepts through visualization/antimutation and symbolic/numerical calculations. The students are required to solve a large portion of related exercises/questions/problems of the main textbooks.

Assignments: Types and Number with Calendar

At least two assignments and two quizzes. A course project may also be assigned.

Assessment							
Sr. No.	Elements	Weightage	Details				
1.	Midterm Assessment	35%	Written Assessment at the mid-point of the semester.				
2.	Formative Assessment	25%	Continuous assessment includes Classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.				
3.	Final Assessment	40%	Written Examination at the end of the semester. At least fifty percent of the question paper would involve new problems related to the concepts learned in the course. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work and report writing etc.				